In-vitro Effect of Imipenem, Fosfomycin, Colistin, and Gentamicin Combination against Carbapenem-resistant and Biofilm-forming Pseudomonas aeruginosa Isolated from Burn Patients

Abstract
The aim of this study was to investigate in-vitro antibacterial and antibiofilm effect of colistin, imipenem, gentamicin, and fosfomycin alone and the various combinations against carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa). Eight carbapenem-resistant and biofilm-forming P. aeruginosa isolates from burn patients were collected. The mechanisms of resistance to carbapenem were determined by the phenotypic, PCR, and Real-Time PCR assays. The minimum inhibitory concentration (MIC) of antimicrobial agents was determined by the broth micro dilution. To detect any inhibitory effect of antibiotics against the biofilm, the biofilm inhibitory concentration was determined. To detect synergetic effects of the combinations of antibiotics, the checkerboard assay and the fractional inhibitory concentration (FIC) were used. The highest synergic effect was observed in colistin/fosfomycin and gentamicin/fosfomycin (5 of 8 isolates), and the lowest synergic effect was found in gentamicin/imipenem and colistin/gentamicin (1 of 8 isolates). Colistin/fosfomycin, imipenem/fosfomycin, colistin/imipenem, gentamicin/fosfomycin, and gentamicin/imipenem were shown synergic effect for 3, 2, 2, 2 and 1 isolates, respectively. The combination of antibiotics had different effects on biofilm and planktonic forms of P. aeruginosa. Therefore, a separate determination of inhibitory effects of the antibiotic in the combination is necessary. Fosfomycin/colistin and fosfomycin/gentamicin were more effective against planktonic form and fosfomycin/colistin against biofilm forms.
Description
Keywords
Citation