Phytoniosome: a Novel Drug Delivery for Myrtle Extract
Author | Mahboobeh Raeiszadeh | en |
Author | Abbas Pardakhty | en |
Author | Fariba Sharififar | en |
Author | Mehrnaz Mehrabani | en |
Author | Hojjat Nejat-mehrab-kermani | en |
Author | Mitra Mehrabani | en |
Issued Date | 2018-07-31 | en |
Abstract | Traditionally, Myrtus communis (myrtle) has been used for treatment of several kinds of disorders. However, there are some factors, namely, low solubility and permeability, which restrict use of myrtle extract (ME) in medical applications. Regarding these limitations, the aim of the present study was to develop a new niosomal formulation to enhance ME stability and permeability. Briefly, several niosomal formulations were prepared by non-ionic surfactants and cholesterol with different molar ratios. Afterward, size, entrapment efficiency (EE%), release and stability of niosomal myrtle extract (nME) were investigated. The effect of ME and nME on viability of 3T3 cells was evaluated using MTT assay. Antibacterial activity of ME and nME was also assessed against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Micrococcus luteus, and Bacillus subtilis. Sizes of niosomes were 5.3 ± 0.3 to 15.9 ± 2.2 µm with 4.1 ± 0.3 to 26.9 ± 1.7 mV zeta potential. The EE% of niosomes was varied from 45.4% to 93.4%. An in-vitro release study on F5 formulation (Span60: Tween60: cholesterol (3:3:4 molar ratio)) revealed that about 36.9%, 38.5% and 26.7% of phytoconstituents were released within 12 h from acetate cellulose membrane, 0.45 µm, regenerated cellulose membrane, 0.45 µm, and cellophane dialysis sack, 12000 Da, respectively. F5 formulation significantly showed lower toxicity on cells. It had higher antibacterial activity that has been shown by lower MICs and higher zone of inhibition compared to ME. | en |
DOI | https://doi.org/10.22037/ijpr.2018.2263 | en |
Keyword | Encapsulation efficiency | en |
Keyword | <i>Myrtus communis</i> | en |
Keyword | Myrtle | en |
Keyword | Phytoniosome | en |
Keyword | Release | en |
Keyword | Stability | en |
Publisher | Brieflands | en |
Title | Phytoniosome: a Novel Drug Delivery for Myrtle Extract | en |
Type | Original Article | en |