Triage of Patients with COVID-19: Using Ensemble Learning Method for Risk Factor Analysis and Death Prediction
Author | Neda Sadat | en |
Author | Sharareh R. Niakan Kalhori | en |
Author | Shahrzad Darvishi | en |
Author | Jamileh Kiani | en |
Author | Farhad Abbasi | en |
Author | Batool Amiri | en |
Author | Erfan Javanmardi | en |
Author | Safiyeh Daneshi | en |
Orcid | Erfan Javanmardi [0000-0003-1752-7784] | en |
Orcid | Safiyeh Daneshi [0000-0001-8218-7275] | en |
Issued Date | 2024-01-31 | en |
Abstract | Background: Early identification of high-risk patients with COVID-19 using non-laboratory data at the time of admission may help the effective use of limited healthcare resources and improve clinical decision-making which reduces cost and time, and consequently the death of patients. | en |
DOI | https://doi.org/10.69107/koomesh-150060 | en |
Keyword | COVID-19 | en |
Keyword | Machine Learning | en |
Keyword | Risk Factors | en |
Publisher | Brieflands | en |
Title | Triage of Patients with COVID-19: Using Ensemble Learning Method for Risk Factor Analysis and Death Prediction | en |
Type | Research Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- koomesh-150060.pdf
- Size:
- 852.09 KB
- Format:
- Adobe Portable Document Format
- Description:
- Article/s PDF