Quantitative Brain MRI Signal Differences in Children with Congenital Portosystemic Shunt Based on 3D T1-Weighted Sequence
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Brieflands
Abstract
Background: Different degrees of T1-weighted (T1W) signal intensities in certain locations on brain magnetic resonance imaging (MRI) are characteristic features of neurological involvement in congenital portosystemic shunt (CPSS). Long-term accumulation of manganese (Mn) as a biomarker can lead to irreversible brain damage. Objectives: The aim of this study was to utilize quantitative brain MRI indicators to characterize brain signal differences in various regions in children with congenital portosystemic shunt. This may contribute to diagnosis, prognosis, and treatment decisions. Patients and Methods: This was a case-control study. Thirty-two patients diagnosed with CPSS based on at least one of the following imaging studies—abdominal ultrasound, Digital Subtraction Angiography (DSA), and Computed Tomography (CT)—and who underwent brain MRI prior to interventional treatment or surgery were included as the Case Group in this study. The age of these patients varied from 22 months to 15 years. Brain MRI of thirty children aged 2 to 15 years, identified without liver or structural diseases, were selected as the Control Group. Results: Significant differences in GFI and API were observed in the Case Group compared with the Control Group (P < 0.01). There was also a statistical difference in GFI between the 3D T1W sequence and the standard T1W sequence (P < 0.01). However, the GFI and API ratios were not correlated with ammonia levels (P > 0.05). The Pearson correlation values were 0.147 and 0.190, respectively. Conclusion: There was a correlation between different brain signals and congenital portosystemic shunt. Quantitative MRI assessment based on the 3D T1-weighted sequence could be used to evaluate these brain signal differences. A longitudinal study with multiple measurements would be beneficial for more accurately assessing such differences, enabling timely interventions, reducing complications, and avoiding lifelong drug therapy.