Impact of Gender, Change of Base of Support, and Visual Deprivation on Postural Balance Control in Young, Healthy Subjects
Author | Amine Ghram | en |
Author | Sirine Abidi | en |
Author | Amal Ben Abdessamie | en |
Author | Katja Weiss | en |
Author | Mohamed Dammak | en |
Author | Salma Jribi | en |
Author | Abdelmoneem Yahia | en |
Author | Sameh Ghroubi | en |
Author | Mohamed Habib Elleuch | en |
Author | Beat Knechtle | en |
Orcid | Sirine Abidi [0000-0001-9020-5912] | en |
Orcid | Beat Knechtle [0000-0002-2412-9103] | en |
Issued Date | 2021-10-31 | en |
Abstract | Background: Vision, vestibular sense, proprioception and muscle strength are required to maintain balance. However, gender could also play a crucial role in postural sway. Objectives: This study was used to examine (i) the impact of gender, surface type, and vision on postural sway; (ii) the effects of gender and vision on the limb symmetry of postural sway; and (iii) to understand the effects of gender, stance, surface type and vision on the alterations of dynamic postural sway alterations. Methods: This was a cross-sectional study in which young, healthy men (n = 15) and women (n = 12) underwent a balance control assessment using a force plate (SATEL, 40 Hz). Postural stances were evaluated in different conditions: Opened eyes (EO) and closed eyes (EC), on different surface foam vs. firm, a dominant leg stance (DL) vs. a non-dominant leg stance (NDL), and a mediolateral stance (ML) vs. an anteroposterior stance (AP). The mediolateral sway (ML sway), anteroposterior sway (AP sway), and sway area were calculated from the centre of pressure displacements. Results: ML sway, AP sway and sway area increased when eyes were closed (P < 0.000). Foam surface perturbs balance control more than firm surface under EO and EC conditions for both genders, as observed in the AP sway curve (P < 0.000). A functional symmetry exists between the DL and NDL for all sway parameters: The ML sway, AP sway, and sway area (P = 0.720; P = 0.292; P = 0.954). The AP stance is more stable for the ML sway than the ML stance for both genders (P < 0.001). For the AP sway, the ML stance is more stable than the AP sway AP direction stance for both genders (P < 0.001). Women were significantly more stable than men in the ML stance when vision was absent (P < 0.01). Conclusions: Postural sway was altered more significantly on a foam surface than on a firm surface and symmetry between the DL and NDL was observed. Furthermore, we concluded that women have better dynamic balance control than men. | en |
DOI | https://doi.org/10.5812/intjssh-126891 | en |
Keyword | Posture | en |
Keyword | Balance | en |
Keyword | Functional Symmetry | en |
Keyword | Visual Condition | en |
Keyword | Gender Differences | en |
Publisher | Brieflands | en |
Title | Impact of Gender, Change of Base of Support, and Visual Deprivation on Postural Balance Control in Young, Healthy Subjects | en |
Type | Research Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- intjssh-4-2-126891.pdf
- Size:
- 218.72 KB
- Format:
- Adobe Portable Document Format
- Description:
- Article/s PDF